1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
use std::{collections::HashMap, mem};

pub use euclid::Rect;
use rustc_hash::{FxHashMap, FxHashSet};
use tracing::info;

use crate::{
    custom_measurer::LayoutMeasurer,
    direction::DirectionMode,
    display::DisplayMode,
    dom_adapter::{DOMAdapter, NodeAreas, NodeKey},
    geometry::{Area, Size2D},
    node::Node,
    prelude::{BoxModel, Gaps},
    size::Size,
};

/// Contains the best Root node candidate from where to start measuring
#[derive(PartialEq, Debug, Clone)]
pub enum RootNodeCandidate<Key: NodeKey> {
    /// A valid Node ID
    Valid(Key, FxHashSet<Key>),

    /// None
    None,
}

impl<Key: NodeKey> RootNodeCandidate<Key> {
    pub fn take(&mut self) -> Self {
        mem::replace(self, Self::None)
    }
}

pub struct Torin<Key: NodeKey> {
    /// Layout results of the registered Nodes
    pub results: FxHashMap<Key, NodeAreas>,

    /// Invalid registered nodes since previous layout measurement
    pub dirty: FxHashSet<Key>,

    /// Best Root node candidate from where to start measuring
    pub root_node_candidate: RootNodeCandidate<Key>,
}

impl<Key: NodeKey> Default for Torin<Key> {
    fn default() -> Self {
        Self::new()
    }
}

#[cfg(feature = "dioxus")]
use dioxus_core::Mutations;
#[cfg(feature = "dioxus")]
use dioxus_native_core::prelude::*;

#[cfg(feature = "dioxus")]
impl Torin<NodeId> {
    pub fn apply_mutations(
        &mut self,
        mutations: &Mutations,
        dioxus_integration_state: &DioxusState,
        dom_adapter: &mut impl DOMAdapter<NodeId>,
    ) {
        use dioxus_core::Mutation;

        for mutation in &mutations.edits {
            match mutation {
                Mutation::SetText { id, .. } => {
                    self.invalidate(dioxus_integration_state.element_to_node_id(*id));
                }
                Mutation::InsertAfter { id, m } => {
                    if *m > 0 {
                        self.invalidate(dioxus_integration_state.element_to_node_id(*id));
                    }
                }
                Mutation::InsertBefore { id, m } => {
                    if *m > 0 {
                        self.invalidate(dioxus_integration_state.element_to_node_id(*id));
                    }
                }
                Mutation::Remove { id } => {
                    self.remove(
                        dioxus_integration_state.element_to_node_id(*id),
                        dom_adapter,
                        true,
                    );
                }
                Mutation::ReplaceWith { id, m } => {
                    if *m > 0 {
                        self.remove(
                            dioxus_integration_state.element_to_node_id(*id),
                            dom_adapter,
                            true,
                        );
                    }
                }
                _ => {}
            }
        }
    }
}

impl<Key: NodeKey> Torin<Key> {
    /// Create a new Layout
    pub fn new() -> Self {
        Self {
            results: HashMap::default(),
            dirty: FxHashSet::default(),
            root_node_candidate: RootNodeCandidate::None,
        }
    }

    /// Reset the layout
    pub fn reset(&mut self) {
        self.root_node_candidate = RootNodeCandidate::None;
        self.results.clear();
        self.dirty.clear();
    }

    /// Read the HashSet of dirty nodes
    pub fn get_dirty_nodes(&self) -> &FxHashSet<Key> {
        &self.dirty
    }

    /// Remove a Node's result and data
    pub fn raw_remove(&mut self, node_id: Key) {
        self.results.remove(&node_id);
        self.dirty.remove(&node_id);
        if let RootNodeCandidate::Valid(id, _) = self.root_node_candidate {
            if id == node_id {
                self.root_node_candidate = RootNodeCandidate::None
            }
        }
    }

    /// Remove a Node from the layout
    pub fn remove(
        &mut self,
        node_id: Key,
        dom_adapter: &mut impl DOMAdapter<Key>,
        invalidate_parent: bool,
    ) {
        // Remove itself
        self.raw_remove(node_id);

        // Mark as dirty the Node's parent
        if invalidate_parent {
            self.invalidate(dom_adapter.parent_of(&node_id).unwrap());
        }

        // Remove all it's children
        for child_id in dom_adapter.children_of(&node_id) {
            self.remove(child_id, dom_adapter, false);
        }
    }

    /// Mark as dirty a Node
    pub fn invalidate(&mut self, node_id: Key) {
        self.dirty.insert(node_id);
    }

    pub fn safe_invalidate(&mut self, node_id: Key, dom_adapter: &mut impl DOMAdapter<Key>) {
        if dom_adapter.is_node_valid(&node_id) {
            self.invalidate(node_id)
        }
    }

    // Mark as dirty the given Node and all the nodes that depend on it
    pub fn check_dirty_dependants(
        &mut self,
        node_id: Key,
        dom_adapter: &mut impl DOMAdapter<Key>,
        ignore: bool,
    ) {
        if (self.dirty.contains(&node_id) && ignore) || !dom_adapter.is_node_valid(&node_id) {
            return;
        }

        // Mark this node as dirty
        self.invalidate(node_id);

        if RootNodeCandidate::None == self.root_node_candidate {
            self.root_node_candidate =
                RootNodeCandidate::Valid(node_id, FxHashSet::from_iter([node_id]));
        } else if let RootNodeCandidate::Valid(root_candidate, ref mut prev_path) =
            &mut self.root_node_candidate
        {
            if node_id != *root_candidate {
                let closest_parent = dom_adapter.closest_common_parent(&node_id, root_candidate);

                if let Some((closest_parent, path)) = closest_parent {
                    prev_path.extend(path);
                    *root_candidate = closest_parent;
                }
            }
        }

        // Mark as dirty this Node's children
        for child in dom_adapter.children_of(&node_id) {
            self.check_dirty_dependants(child, dom_adapter, true)
        }

        // Mark this Node's parent if it is affected
        let parent_id = dom_adapter.parent_of(&node_id);

        if let Some(parent_id) = parent_id {
            let parent = dom_adapter.get_node(&parent_id);

            if let Some(parent) = parent {
                // Mark parent if it depeneds on it's inner children
                if parent.does_depend_on_inner() {
                    self.check_dirty_dependants(parent_id, dom_adapter, true);
                }
                // Mark all the siblings  that come after this node
                else {
                    let mut found_node = false;
                    let mut multiple_children = false;
                    for child_id in dom_adapter.children_of(&parent_id) {
                        if found_node {
                            self.check_dirty_dependants(child_id, dom_adapter, true);
                        }
                        if child_id == node_id {
                            found_node = true;
                        } else {
                            multiple_children = true;
                        }
                    }

                    // Try saving using  node's parent as root candidate if it has multiple children
                    if multiple_children {
                        if let RootNodeCandidate::Valid(root_candidate, ref mut prev_path) =
                            &mut self.root_node_candidate
                        {
                            let closest_parent =
                                dom_adapter.closest_common_parent(&parent_id, root_candidate);

                            if let Some((closest_parent, path)) = closest_parent {
                                prev_path.extend(path);
                                *root_candidate = closest_parent;
                            }
                        }
                    }
                }
            }
        }
    }

    /// Get the Root Node candidate
    pub fn get_root_candidate(&self) -> RootNodeCandidate<Key> {
        self.root_node_candidate.clone()
    }

    /// Find the best root Node from where to start measuring
    pub fn find_best_root(&mut self, dom_adapter: &mut impl DOMAdapter<Key>) {
        if self.results.is_empty() {
            return;
        }
        for dirty in self.dirty.clone() {
            self.check_dirty_dependants(dirty, dom_adapter, false);
        }
    }

    /// Measure dirty Nodes
    pub fn measure(
        &mut self,
        suggested_root_id: Key,
        suggested_root_area: Area,
        measurer: &mut Option<impl LayoutMeasurer<Key>>,
        dom_adapter: &mut impl DOMAdapter<Key>,
    ) {
        // If there are previosuly cached results
        // But no dirty nodes, we can simply skip the measurement
        // as this means no changes has been made to the layout
        if self.dirty.is_empty() && !self.results.is_empty() {
            return;
        }

        // Try the Root candidate otherwise use the provided Root
        let (root_id, root_path) =
            if let RootNodeCandidate::Valid(id, path) = self.root_node_candidate.take() {
                (id, path)
            } else {
                (suggested_root_id, FxHashSet::from_iter([suggested_root_id]))
            };
        let root_parent = dom_adapter.parent_of(&root_id);
        let areas = root_parent
            .and_then(|root_parent| self.get(root_parent).cloned())
            .unwrap_or(NodeAreas {
                area: suggested_root_area,
                inner_area: suggested_root_area,
                inner_sizes: Size2D::default(),
                margin: Gaps::default(),
            });
        let root = dom_adapter.get_node(&root_id).unwrap();
        let root_height = dom_adapter.height(&root_id).unwrap();

        info!(
            "Processing {} dirty nodes and {} cached nodes from a height of {}",
            self.dirty.len(),
            self.results.len(),
            root_height
        );

        let (root_revalidated, root_areas) = measure_node(
            root_id,
            &root,
            self,
            &areas.inner_area,
            &areas.inner_area,
            measurer,
            true,
            dom_adapter,
            &root_path,
        );

        // Cache the root Node results if it was modified
        if root_revalidated {
            self.cache_node(root_id, root_areas);
        }

        self.dirty.clear();
        self.root_node_candidate = RootNodeCandidate::None;
    }

    /// Get the areas of a Node
    pub fn get(&self, node_id: Key) -> Option<&NodeAreas> {
        self.results.get(&node_id)
    }

    /// Cache a Node's areas
    pub fn cache_node(&mut self, node_id: Key, areas: NodeAreas) {
        self.results.insert(node_id, areas);
    }
}

/// Measure this node and all it's children
/// The caller of this function is responsible of caching the Node's layout results
#[allow(clippy::too_many_arguments)]
#[inline(always)]
fn measure_node<Key: NodeKey>(
    node_id: Key,
    node: &Node,
    layout: &mut Torin<Key>,
    parent_area: &Area,
    available_parent_area: &Area,
    measurer: &mut Option<impl LayoutMeasurer<Key>>,
    must_cache: bool,
    dom_adapter: &mut impl DOMAdapter<Key>,
    root_path: &FxHashSet<Key>,
) -> (bool, NodeAreas) {
    let must_run = layout.dirty.contains(&node_id) || layout.results.get(&node_id).is_none();
    if must_run {
        let horizontal_padding = node.padding.horizontal();
        let vertical_padding = node.padding.vertical();

        let mut area = Rect::new(
            available_parent_area.origin,
            Size2D::new(horizontal_padding, vertical_padding),
        );

        area.size.width = node.width.min_max(
            area.size.width,
            parent_area.size.width,
            node.margin.horizontal(),
            &node.minimum_width,
            &node.maximum_width,
        );
        area.size.height = node.height.min_max(
            area.size.height,
            parent_area.size.height,
            node.margin.vertical(),
            &node.minimum_height,
            &node.maximum_height,
        );

        // Custom measure
        let skip_inner = if let Some(measurer) = measurer {
            let custom_measure =
                measurer.measure(node_id, node, &area, parent_area, available_parent_area);
            if let Some(new_area) = custom_measure {
                if Size::Inner == node.width {
                    area.size.width = node.width.min_max(
                        new_area.width(),
                        parent_area.size.width,
                        node.margin.horizontal(),
                        &node.minimum_width,
                        &node.maximum_width,
                    );
                }
                if Size::Inner == node.height {
                    area.size.height = node.height.min_max(
                        new_area.height(),
                        parent_area.size.height,
                        node.margin.vertical(),
                        &node.minimum_height,
                        &node.maximum_height,
                    );
                }
            }
            custom_measure.is_some()
        } else {
            false
        };

        let mut inner_sizes = Size2D::default();

        // Node's inner area
        let mut inner_area = {
            let mut inner_area = area.box_area(&node.margin);
            if Size::Inner == node.width {
                inner_area.size.width = available_parent_area.width()
            }
            if Size::Inner == node.height {
                inner_area.size.height = available_parent_area.height()
            }
            inner_area
        };

        // Apply padding
        inner_area.origin.x += node.padding.left();
        inner_area.origin.y += node.padding.top();
        inner_area.size.width -= horizontal_padding;
        inner_area.size.height -= vertical_padding;

        // Node's available inner area
        let mut available_area = inner_area;

        // Apply scroll
        available_area.origin.x += node.offset_x.get();
        available_area.origin.y += node.offset_y.get();

        let mut measurement_mode = MeasureMode::ParentIsNotCached {
            area: &mut area,
            inner_area: &mut inner_area,
            vertical_padding,
            horizontal_padding,
        };

        if !skip_inner {
            measure_inner_nodes(
                &node_id,
                node,
                layout,
                &mut available_area,
                &mut inner_sizes,
                measurer,
                must_cache,
                &mut measurement_mode,
                dom_adapter,
                root_path,
            );
        }

        (
            must_cache,
            NodeAreas {
                area,
                margin: node.margin,
                inner_area,
                inner_sizes,
            },
        )
    } else {
        let areas = layout.get(node_id).unwrap().clone();

        if true {
            let mut inner_sizes = areas.inner_sizes;
            let mut available_area = areas.inner_area;

            // TODO(marc2332): Should I also cache these?
            available_area.origin.x += node.offset_x.get();
            available_area.origin.y += node.offset_y.get();

            let mut measurement_mode = MeasureMode::ParentIsCached {
                inner_area: &areas.inner_area,
            };

            measure_inner_nodes(
                &node_id,
                node,
                layout,
                &mut available_area,
                &mut inner_sizes,
                measurer,
                must_cache,
                &mut measurement_mode,
                dom_adapter,
                root_path,
            );
        }

        (false, areas)
    }
}

/// Measurement data for the inner Nodes of a Node
#[derive(Debug)]
enum MeasureMode<'a> {
    ParentIsCached {
        inner_area: &'a Area,
    },
    ParentIsNotCached {
        area: &'a mut Area,
        inner_area: &'a mut Area,
        vertical_padding: f32,
        horizontal_padding: f32,
    },
}

impl<'a> MeasureMode<'a> {
    /// Get a reference to the inner area
    pub fn inner_area(&'a self) -> &'a Area {
        match self {
            Self::ParentIsCached { inner_area } => inner_area,
            Self::ParentIsNotCached { inner_area, .. } => inner_area,
        }
    }
}

/// Measure the inner Nodes of a Node
#[allow(clippy::too_many_arguments)]
#[inline(always)]
fn measure_inner_nodes<Key: NodeKey>(
    node_id: &Key,
    node: &Node,
    layout: &mut Torin<Key>,
    available_area: &mut Area,
    inner_sizes: &mut Size2D,
    measurer: &mut Option<impl LayoutMeasurer<Key>>,
    must_cache: bool,
    mode: &mut MeasureMode,
    dom_adapter: &mut impl DOMAdapter<Key>,
    root_path: &FxHashSet<Key>,
) {
    let children = dom_adapter.children_of(node_id);

    // Center display

    if node.display == DisplayMode::Center {
        let child_id = children.first();

        if let Some(child_id) = child_id {
            let inner_area = *mode.inner_area();
            let child_data = dom_adapter.get_node(child_id).unwrap();

            let (_, child_areas) = measure_node(
                *child_id,
                &child_data,
                layout,
                &inner_area,
                available_area,
                measurer,
                false,
                dom_adapter,
                root_path,
            );

            // TODO(marc2332): Should I also reduce the width and heights?
            match node.direction {
                DirectionMode::Horizontal => {
                    let new_origin_x =
                        (inner_area.width() / 2.0) - (child_areas.area.width() / 2.0);
                    available_area.origin.x = inner_area.min_x() + new_origin_x;
                }
                DirectionMode::Vertical => {
                    let new_origin_y =
                        (inner_area.height() / 2.0) - (child_areas.area.height() / 2.0);
                    available_area.origin.y = inner_area.min_y() + new_origin_y;
                }
                DirectionMode::Both => {
                    let new_origin_x =
                        (inner_area.width() / 2.0) - (child_areas.area.width() / 2.0);
                    let new_origin_y =
                        (inner_area.height() / 2.0) - (child_areas.area.height() / 2.0);
                    available_area.origin.x = inner_area.min_x() + new_origin_x;
                    available_area.origin.y = inner_area.min_y() + new_origin_y;
                }
            }
        }
    }

    // Normal display

    for child_id in children {
        let inner_area = *mode.inner_area();

        let child_data = dom_adapter.get_node(&child_id).unwrap().clone();

        let (child_revalidated, child_areas) = measure_node(
            child_id,
            &child_data,
            layout,
            &inner_area,
            available_area,
            measurer,
            must_cache,
            dom_adapter,
            root_path,
        );

        match node.direction {
            DirectionMode::Horizontal => {
                // Move the available area
                available_area.origin.x = child_areas.area.max_x();
                available_area.size.width -= child_areas.area.size.width;

                if let MeasureMode::ParentIsNotCached {
                    area,
                    vertical_padding,
                    inner_area,
                    ..
                } = mode
                {
                    inner_sizes.height = child_areas.area.height();
                    inner_sizes.width += child_areas.area.width();

                    // Keep the biggest height
                    if node.height == Size::Inner {
                        area.size.height = area
                            .size
                            .height
                            .max(child_areas.area.size.height + *vertical_padding);
                        // Keep the inner area in sync
                        inner_area.size.height = area.size.height - *vertical_padding;
                    }

                    // Accumulate width
                    if node.width == Size::Inner {
                        area.size.width += child_areas.area.size.width;
                    }
                }
            }
            DirectionMode::Vertical => {
                // Move the available area
                available_area.origin.y = child_areas.area.max_y();
                available_area.size.height -= child_areas.area.size.height;

                if let MeasureMode::ParentIsNotCached {
                    area,
                    horizontal_padding,
                    inner_area,
                    ..
                } = mode
                {
                    inner_sizes.width = child_areas.area.width();
                    inner_sizes.height += child_areas.area.height();

                    // Keep the biggest width
                    if node.width == Size::Inner {
                        area.size.width = area
                            .size
                            .width
                            .max(child_areas.area.size.width + *horizontal_padding);
                        // Keep the inner area in sync
                        inner_area.size.width = area.size.width - *horizontal_padding;
                    }

                    // Accumulate height
                    if node.height == Size::Inner {
                        area.size.height += child_areas.area.size.height;
                    }
                }
            }
            DirectionMode::Both => {
                // Move the available area
                available_area.origin.x = child_areas.area.max_x();
                available_area.origin.y = child_areas.area.max_y();

                available_area.size.width -= child_areas.area.size.width;
                available_area.size.height -= child_areas.area.size.height;

                if let MeasureMode::ParentIsNotCached { area, .. } = mode {
                    inner_sizes.width += child_areas.area.width();
                    inner_sizes.height += child_areas.area.height();

                    // Accumulate width
                    if node.width == Size::Inner {
                        area.size.width += child_areas.area.size.width;
                    }

                    // Accumulate height
                    if node.height == Size::Inner {
                        area.size.height += child_areas.area.size.height;
                    }
                }
            }
        }

        if child_revalidated && must_cache {
            layout.cache_node(child_id, child_areas);
        }
    }
}